
MDCFUG Blog: Mike Brunt's Pre-CFUnited Blog

Mike Brunt's Pre-CFUnited Blog
Posted At : June 9, 2008 11:40 AM | Posted By : Matt Weiss
Related Categories: Test

I will be presenting at CFUnited on Friday June 20, 2008, on the subject of High
Availability (HA)-Clustering for ColdFusion/JRun applications and I intend to
make this as practical as possible. Having spent many years travelling the world
helping to fix slow or unresponsive ColdFusion applications, I see HA as a natural
progression to this and in fact Load-Balancing, which is a part of Clustering, has a
direct impact on improving performance.

There is a point, often overlooked by even the manufacturers of clustering/load
balancing equipment. Clustering is the overall term which, in my opinion, applies
whenever two items or more appear as one, to the users. In our world, that
typically means multiple web servers, with multiple application and database
servers.

With this aspect of Clustering there are two services which are a part of the
Clustering; and . In my experience is Fail-Over Load-Balancing Fail-Over
always present, meaning if one member of the Cluster fails the remaining
members ensure that continuity of service is maintained. This is a prime function
of a Cluster.

MDCFUG Blog: Mike Brunt's Pre-CFUnited Blog

 is the apportioning of load around members of the Cluster, Load-Balancing
typically an even distribution of the load is what is required. The most even
distribution is via Round-Robin which means each single request moves around
the Cluster members, like this (this example shows a 3 member Cluster):

USER 1 > REQUEST1 > CLUSTERMEMBER1•

USER 2 > REQUEST1 > CLUSTERMEMBER1•

USER 1 > REQUEST2 > CLUSTERMEMBER2•

USER 2 > REQUEST2 > CLUSTERMEMBER2•

USER 1 > REQUEST3> CLUSTERMEMBER3•

USER 2 > REQUEST3> CLUSTERMEMBER3•

USER 1 > REQUEST4 > CLUSTERMEMBER1•

USER 2 > REQUEST4 > CLUSTERMEMBER1•

This is the most evenly balanced Load Balancing algorithm and as I mentioned
above is the Round-Robin algorithm. Problems can occur with that algorithm if
there are user specific items in memory on one of the Cluster members, for
instance in memory session state variables. If USER1 has logged in to
CLUSTERMEMBER1 above and their details are in session variables on
CLUSTERMEMBER1 when users next request takes them to
CLUSTERMEMBER2 those in memory session state variables will not be there.
My preference for the optimal Load-Balancing algorithm is Round-Robin with
Sticky Sessions. In the case a user “sticks” to a Cluster member as follows:

MDCFUG Blog: Mike Brunt's Pre-CFUnited Blog

USER 1 > REQUEST1 > CLUSTERMEMBER1•

USER 2 > REQUEST1 > CLUSTERMEMBER2•

USER 1 > REQUEST2 > CLUSTERMEMBER1•

USER 2 > REQUEST2 > CLUSTERMEMBER2•

USER 1 > REQUEST3> CLUSTERMEMBER1•

USER 2 > REQUEST3> CLUSTERMEMBER2•

USER 1 > REQUEST4 > CLUSTERMEMBER1•

USER 2 > REQUEST4 > CLUSTERMEMBER2•

This is not quite as evenly balanced as Round-Robin alone but unless there is a
failure of one Cluster member the user will not lose their session state variables
and the load balances across all Cluster members eventually.

This article serves as the first in a series of posts leading up to the CFUnited
presentation and my next one will delve into differences between Hardware and
Software Clustering.

MDCFUG Blog: Mike Brunt's Pre-CFUnited Blog

